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Evaluation of Antennas in an Electrically
Conductive Medium

Jaechun Lee and Sangwook Nam

Abstract—The quality factor is analyzed for the spherical modes which
represent fields of an antenna in an electrically lossy medium. Like the pre-
vious approach in free space, the stored energy in the evanescent field is
represented by subtracting the energy associated with the radiation field
from the total field energy. Instead of evaluating the stored energy over the
whole space, simple equations on Q using the radiation efficiency and the
medium property are derived using the concept of power dissipation in a
lossy medium and the relation betweenQ of TM and TE modes. The theory
is verified by the comparison of Q’s evaluated from the impedance band-
widths of TM and TE modes and the proposed equations in a lossy medium.

Index Terms—Antenna theory, lossy systems, quality factor, spherical
mode, stored energy.

I. INTRODUCTION

The quality factor or Q concept in an antenna has been used as a
measure of bandwidth limitation by the definition and the relation

Q =
!jWintj

P
�

1

FBWcd

�
2

FBWV

(1)

when Q � 1 (Q > 2 often suffices), where Wint is the total internal
energy of the antenna tuned (to have zero input reactance), P is the
input power, and FBWcd and FBWV are the fractional half-power
bandwidth of conductance with a constant voltage source and of the
matched voltage standing wave ratio (VSWR), respectively [1], [2].
In earlier works, Q of an antenna was evaluated by the combination
of Q’s of the spherical modes, which represent the radiated fields of
the antenna [3], [4]. Because Q of the spherical mode is solved by
considering only the region outside a sphere within which an antenna
is assumed to be placed, it is a partial Q of an actual antenna and a
true limit for an ideal antenna not having the internal energy inside the
sphere. That is

Qexact = Q
in
+Q

out � Qout (2)

whereQexact is the exactQ of the actual antenna,Qin andQout are di-
videdQ’s by the surface of the sphere, andQout is obtainable fromQ
of the spherical mode. Therefore,Q of the spherical mode was used to
estimate the minimumQ or the maximum bandwidth of an unspecified
antenna with a given size [3], [4]. These works were for antennas in free
space; however, nowadays there are increasing cases of antennas in a
lossy medium. Especially, in the medical field, for wireless transmis-
sion of information from inside a human body, a small transceiver is im-
planted or swallowed into the human body, which is known as an elec-
trically lossy medium [5]. Then, for the estimation of the impedance
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bandwidth and efficiency of the antenna in such systems, Q of spher-
ical modes in an electrically lossy medium needs to be evaluated.

In the evaluation of Q of the spherical mode, we found two defi-
nitions of the stored or internal energy, W 0, in the region outside the
sphere in free space. The first is given by [6] as

W 0 =W �Wr (3)

where W and Wr are the energy associated with the total field and the
radiation field, respectively. Although this is conceptually defined by
intuition, its solution results in the equal energy stored in the reactive
elements of the equivalent circuit of the spherical mode in [3]. The
second is mentioned by [7] and confirmed in [1] as

W 0 =W � lim
r!1

r
Pr(r)

c
(4)

where Pr(r) is the radiated power at distance r and c is the velocity of
energy flow. This was rigorously derived from the frequency derivative
of the input reactance of the antenna. Equations (3) and (4) are shown
to be nearly equal in free space for an electrically small antenna [1, Ap-
pendix C]. But if we assume the space is filled with a medium infinitely,
and there is even a very little loss in the medium, (4) becomes very large
because the second term in (4) becomes zero, owing to the exponential
attenuation of the radiated power. So, we used the first definition.

In this letter, Q of the spherical modes in an electrically lossy
medium is analyzed in a similar manner as in the earlier works, and
the relation between Q’s of TM and TE modes is found with their
radiation efficiency. By the concept of separating the radiated power
and the dissipated power in a medium, Q of TM modes could be
obtained by the radiation efficiency and the medium property, and
using the relation between Q’s of TM and TE modes, Q of TE modes
is derived as a simple equation.

II. Q OF THE SPHERICAL MODES IN FREE SPACE

Generally the quality factor or Q of an antenna is defined as [8]

Q =

2!W

P
W 0

e > W 0

m

2!W

P
W 0

m > W 0

e

(5)

whereW 0

e andW 0

m are the average stored electric and magnetic energy,
and Pr is the radiated power. To evaluate (5) for an antenna, equiva-
lent circuits of the spherical modes that represent fields of the antenna
outside a sphere boundary were derived and the energy stored in the re-
active elements of the circuit was considered as the stored energy of the
antenna [3]. Later the stored energy was obtained from the energy den-
sity stored in the evanescent fields over the whole space by subtracting
the energy associated with the radiation field [6]. In [6], considering
the fields of an antenna outside a sphere of radius a, the stored energy
in free space is given by

W 0

e +W 0

m =

1

a

2�

0

�

0

(we + wm)r
2 sin �d�d�dr �

1

a

Pr
c
dr (6)

where we = (1=4)�jEj2, wm = (1=4)�jHj2, and c = 1=
p
�� are the

electric, magnetic field energy density, and the velocity of energy flow
with � = �0 and � = �0. (6) can be rewritten as in [9]

W 0

e =

1

a

2�

0

�

0

(we � we:r)r
2 sin �d�d�dr (7)

W 0

m =

1

a

2�

0

�

0

(wm � wm:r)r
2 sin �d�d�dr (8)

where we:r = (1=4)�jEradj2 and wm:r = (1=4)�jHradj2 are the
electric and magnetic energy density associated with the radiation field.

The radiated power can be obtained from the complex power S that
is given by the integration of the complex Poynting vector over the
surface of r as

S(r) =
1

2

2�

0

�

0

(E�H�) � r̂r2 sin �d�d�

=Pr + j2! fWm(r)�We(r)g (9)

where the radiated power is independent of the surface of r assuming
lossless in free space.

To evaluate Q of TM0n spherical modes, let us set the magnetic
vector potential as

Ar = Ĥn(kr)Pn(cos �)

where Ĥn(x) = xhn(x) is other type of the spherical Hankel function
of the second kind used in [8]. Then, the field components are given as

Er = �
n(n+ 1)

jkr2
Ĥn(kr)Pn(cos�)

E� =
�

jr
Ĥ 0

n(kr)P
1
n(cos �)

H� = � 1

r
Ĥn(kr)P

1
n(cos �) (10)

where Ĥ 0

n(kr) = @Ĥn(kr)=@(kr).
The complex power becomes

S =
1

2

2�

0

�

0

E�H
�

�r
2 sin �d�d�

=
1

2
�nj�Ĥ

0

n(kr)Ĥn(kr)
� (11)

where �n =
2�

0

�

0
P 1
n(cos �)

2 sin �d�d�= (4�n(n+1))=(2n+1).
Using lim

x!1
Ĥn(x) = jn+1e�jx in (11) at r ! 1, the radiated

power can be easily obtained by (9) as

Pr = lim
r!1

Re fS(r)g = 1

2
�n� (12)

and using (10) in (7), the stored electric energy, which is larger than
magnetic energy in TM modes, is given as

W 0

e =
1

4
�

1

a

2�

0

�

0

jErj2+jE�j2� Erad
�

2

r2 sin �d�d�dr

=
1

4
�n�

1

a

n(n+ 1)

(kr)2
Ĥn(kr)

2

+ Ĥ 0

n(kr)
2

� 1 dr (13)
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where 2�

0

�

0
Pn(cos �)

2 sin �d�d� = 4�=(2n + 1) and Erad
� =

�(�=r)e�jkrP 1
n(cos �).

By the integration of (13) and using (12), Q can be given as

Qn =
2!W 0

e

Pr

= ka�
ka

2
Ĥn(ka)

2

+
ka

2

� Ĵn�1(ka)Ĵn+1(ka) + N̂n�1(ka)N̂n+1(ka)

� Ĵn(ka)Ĵ
0
n(ka)� N̂n(ka)N̂

0
n(ka) (14)

where Ĵn(x) = xjn(x) and N̂n(x) = xyn(x) are other types of the
spherical Bessel functions of the first and second kinds, with Ĥn(x) =
Ĵn(x)�jN̂n(x). This is the same result in [6] with a different notation.

For Q of TE0n modes, if we set the electric vector potential as

Fr = �Ĥn(kr)Pn(cos�):

Then the field components are given as

Hr =
n(n+ 1)

jkr2
Ĥn(kr)Pn(cos�)

H� =
1

jr
Ĥ 0
n(kr)P

1
n(cos �)

E� =
�

r
Ĥn(kr)P

1
n(cos �): (15)

The complex power becomes

S = �
1

2

2�

0

�

0

E�H
�
� r

2 sin �d�d�

= �
1

2
�nj�Ĥn(kr)Ĥ

0
n(kr)

� (16)

The radiated power is same as in (12), and using (15) in (8), the
stored magnetic energy becomes equal to (13). Therefore, Q of TE0n
modes is same as (14) in free space.

III. RADIATION EFFICIENCY IN A LOSSY MEDIUM

Assuming an antenna in a lossy medium, the real part of the complex
power is not only the radiated power but also the dissipated power in
the evanescent fields, Pd, as

S(r) = Pr + Pd + j2!fWm �Weg: (17)

In the far-field region, only the radiated power exists and attenuates
from the surface of radius a as

Pr(r) =Re fS(r)g ; as r !1

=Pr(a)e
�2jIm(k)j(r�a): (18)

The radiated power at a distance r can be expressed in terms of the
input power into the surface of radius a, the radiation efficiency, �e� ,
and the attenuation factor as in [10]

Pr(r) = �e�Re fS(a)ge
�2jIm(k)jr (19)

where �e� =
Pr(a)

Re fS(a)g
e2jIm(k)ja: (20)

The radiation efficiency of TM0n and TE0n modes in a lossy
medium can be evaluated by using (11) and (16) in (18) and the results
give the same radiated power for both modes as

Pr(r) = lim
r!1

Re fS(r)g

=
1

2
�nRe(�)e

�2jIm(k)jr

then by (19) the radiation efficiency is given as

�e� =

Ref�g

Refj�Ĥ (ka)Ĥ (ka) g
TM mode

Ref�g

Ref�j�Ĥ (ka)Ĥ (ka) g
TE mode

: (21)

This is the same result in [10] with a different notation.

IV. Q OF THE SPHERICAL MODES IN AN ELECTRICALLY

LOSSY MEDIUM

A. Q’s of TM and TE Modes and Their Relationship

Q of spherical modes in a lossy medium will be considered on the
assumption that the medium is homogeneous, infinite, and only elec-
trically conductive. Also, its dispersion is assumed to be nearly neg-
ligible in the interested bandwidth, that is, j@�r=@!j � �r=! and
j@�=@!j � �=!, where � = �r � j�i, �i = �=!, and � = �0.
For the evaluation of Q, the energy associated with the radiation fields
in a lossy medium should be subtracted like in free space problem; oth-
erwise, Q becomes very large when the loss is small. Therefore, Q of
TM modes, by using we = (1=4)�rjEj

2 as the electric energy density,
is given by

QTM =
2!W 0

e

P
=

2!W 0
e

Re fS(a)g

=!�
�r
j�j

1

a

n(n+ 1)

(kr)2
Ĥn(kr)

2

+ Ĥ 0
n(kr)

2

� e�2jIm(k)jr dr

=Re j�Ĥ 0
n(ka)Ĥn(ka)

� : (22)

Q of TE modes by (8) and (16) is given as

QTE =
2!W 0

m

P
=

2!W 0
m

Re fS(a)g

=!�

1

a

n(n+ 1)

(kr)2
Ĥn(kr)

2

+ Ĥ 0
n(kr)

2

� e�2jIm(k)jr dr

=Re �j�Ĥn(ka)Ĥ
0
n(ka)

� : (23)
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Comparing (22) and (23) with (21), a relation between QTM and
QTE can be found in terms of the radiation efficiency as

cos �
QTE

�e�:TE
=

QTM

�e�:TM
(24)

where � = tan�1(�i=�r).

B. Q Derivation in Terms of Radiation Efficiency and Medium
Property

If we consider Q from the electric energy stored in the electric field
and the supplied power which is dissipated by the electric field in a
volume, the Q, denoted as Qd, can be given only by the medium prop-
erty as

Qd =
2!We

P
= 2! V

1
4
�r jEj

2dV

V

1
2
�jEj2dV

=
�r
�i

=
1

tan �
:

Then Q of TM modes can be expressed in terms of Qd and the
radiation efficiency by (20) as

QTM =
2!W 0

e

P
=

2!We

P
�

2!We:r

P

=
2!We

P
�

Pr
Re fS(a)g

2!We:r

Pr

= 1� �e�:TMe
�2jIm(k)ja cot � (25)

where We:r is the electric energy associated with the radiation field
and 2!We=P = 2!We:r=Pr = Qd. Equation (25) converges to (14)
when � ! 0 as expected and proved in the Appendix. Using (25) in
(24), Q of TE modes can be obtained without the evaluation of (23) as

QTE = �e�:TE
1

�e�:TM
� e�2jIm(k)ja csc �: (26)

V. NUMERICAL EXAMPLES

For the verification of (25) and (26), Q from the half-power band-
width of the reflection coefficient is compared as in [2]

Q � Q3 dB =
2!0

Half � Power Bandwidth
(27)

when Q � 1 (Q 2 often suffices). The reflection coefficients are
given by using the impedance of TM and TE modes matched by series
inductor and parallel capacitance, respectively, at !0 as

�TM(!) =
ZTM(!) + j!L� Re fZTM(!)g

ZTM(!) + j!L+Re fZTM(!)g

where L =
Im fZTM(!0)g

!0
; ZTM =

E�

H�

= j�
Ĥ 0

n(ka)

Ĥn(ka)

�TE(!) = �
YTE(!) + j!C � Re fYTE(!)g

YTE(!) + j!C +Re fYTE(!)g

where C =
Im fYTE(!0)g

!0
; YTE = �

H�

E�

=
j

�

Ĥ 0
n(ka)

Ĥn(ka)
:

Fig. 1. Q of TM , TE , TM and TE modes with a = 0:05� and
� = � = ! = 1.

Fig. 1 shows Q of TM01, TE01, TM02, and TE02 modes with
a = 0:05� and �r = � = ! = 1. In Fig. 1, Q’s of (25) and (26)
agree well with (27) and converge to (14) when � ! 0. One can see
that the magnetic type antenna, i.e., loop, which generates TE modes
has higher Q than the electric type antenna, i.e., dipole, which gen-
erates TM modes at the cost of its superior radiation efficiency in the
electrically conducting media as shown in [10].

VI. CONCLUSION

Q of spherical modes in an electrically conductive medium is de-
rived as simple equations in terms of radiation efficiency and medium
property. The theory was verified by the comparison of Q’s evaluated
from the impedance bandwidths of TM and TE modes and the pro-
posed equations in a lossy medium. This result will be helpful to esti-
mate easily the lower bound on Q, the bandwidth, and the efficiency of
an antenna emerging in an electrically lossy medium.

APPENDIX

Proof that QTM of (25) converges to Qn of (14) as � ! 0: The
denominator of �e�:TM in (21) is rearranged as

Re j�Ĥ 0
n(ka)Ĥn(ka)

� =Re f�(A+jB)g

=Ref�Ag�Ref�gImfBg�Imf�gRefBg

(28)
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where

A = Ĵn(ka)
�
N̂

0
n(ka)� N̂n(ka)

�
Ĵ
0
n(ka)

B = Ĵ
0
n(ka)Ĵn(ka)

� + N̂
0
n(ka)N̂n(ka)

�
:

For brevity, the loss tangent term is denoted as �

� = tan �:

Then � ! 0 means � ! 0.
As �! 0, by the Wronskian of Bessel’s equation, A becomes

A = Ĵn(ka)
�
N̂

0
n(ka)� N̂n(ka)

�
Ĵ
0
n(ka) � 1 (29)

and the wave impedance and the wave constant are approximated as

� � �0 1 + j
�

2
; k � k0 1� j

�

2
(30)

where �0 and k0 are the values of lossless medium with � = 0, and
using (30), the following terms are approximated as

Ĵn(ka) � Ĵn(k0a)� j
�

2
k0aĴ

0
n(k0a) (31)

Ĵ
0
n(ka) � Ĵ

0
n(k0a)� j

�

2
k0aĴ

00
n(k0a): (32)

Using (31) and (32), and neglecting the term multiplied by �2, the
first term in B is approximated as

Ĵ
0
n(ka)Ĵn(ka)

� � Ĵn(k0a)Ĵ
0
n(k0a)

+j
�

2
k0a Ĵ

0
n(k0a)

2 � Ĵn(k0a)Ĵ
00
n(k0a) (33)

and, in the same way, the second term inB is approximated in the same
form.

Using (29), (30), and (33) in (28) results in

Ref�Ag�Ref�gImfBg�Imf�gRefBg

� �0+�0� k0a�
k0a

2
Ĵ
0
n(k0a)

2+N̂ 0
n(k0a)

2

�Ĵn(k0a)Ĵ
00
n(k0a) �N̂n(k0a)N̂

00
n (k0a)

�
1

2
Ĵn(k0a)Ĵ

0
n(k0a)+N̂n(k0a)N̂

0
n(k0a) : (34)

The term within square brackets in (34) is equal to (14) by the following
relationships of Bessel function:

Ĵ
02
n =

1

x
ĴnĴ

0
n � Ĵn�1Ĵn+1 +

n(n+ 1)

x2
Ĵ
2
n

Ĵ
00
n =

n(n+ 1)

x2
� 1 Ĵn:

Then (28) is approximated as

Re j�Ĥ
0
n(ka)Ĥn(ka)

� � �0 + �0�Qn

and QTM of (25) converges to

QTM = 1�
Ref�ge�2jIm(k)ja

Re j�Ĥ 0
n(ka)Ĥn(ka)�

cot �

� 1�
�0

�0 + �0�Qn

1

�

=QdkQn

�Qn

as � ! 0, where QdkQn = (Q�1
d

+Q�1
n )

�1
.
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